
Calculate ESC 2019 PTP for obstructive CAD
Source:R/esc_2019_conference_ptp.R
calculate_esc_2019_ptp.Rd
This function returns a patient's pre-test Probability (PTP) of obstructive coronary artery disease (CAD) based on the European Society of Cardiology (ESC) 2019 guidelines.
Usage
calculate_esc_2019_ptp(
age,
sex,
have_dyspnoea,
chest_pain_type,
output = c("grouping", "numeric", "percentage"),
label_sex_male = c("male"),
label_sex_female = c("female"),
label_sex_unknown = c(NA, NaN),
label_have_dyspnoea_no = c("no"),
label_have_dyspnoea_yes = c("yes"),
label_have_dyspnoea_unknown = c(NA, NaN),
label_cpt_no_chest_pain = c("no chest pain"),
label_cpt_nonanginal = c("nonanginal"),
label_cpt_atypical = c("atypical"),
label_cpt_typical = c("typical"),
label_cpt_unknown = c(NA, NaN)
)
Arguments
- age
Input integer value to indicate the age of the patient in years.
- sex
The value of variable in the parameters
label_sex_male
,label_sex_female
andlabel_sex_unknown
.- have_dyspnoea
The value of variable in the parameters
label_have_dyspnoea_no
,label_have_dyspnoea_yes
andlabel_have_dyspnoea_unknown
.- chest_pain_type
The value of variable in the parameters
label_cpt_no_chest_pain
,label_cpt_nonanginal
,label_cpt_atypical
,label_cpt_typical
andlabel_cpt_unknown
.- output
Input text to indicate the how pre-test probability results be expressed Default: c("grouping", "numeric", "percentage")
grouping means the PTP will be expressed as Low, Intermediate and High.
low if PTP is less than 5%.
intermediate if PTP is in between 5% to 15%.
high if PTP is more than 15%.
numeric means the PTP will be expressed as an integer probability (0-100).
percentage means the PTP will be expressed as percentage text (0-100%).
- label_sex_male
Label(s) for definition(s) of male sex. Default:
c("male")
- label_sex_female
Label(s) for definition(s) of female sex. Default:
c("female")
- label_sex_unknown
Label(s) for definition(s) of missing sex. Default:
c(NA, NaN)
- label_have_dyspnoea_no
Label(s) for patient having no dyspnoea symptoms. Default:
c("no")
- label_have_dyspnoea_yes
Label(s) for patient having dyspnoea symptoms. Default:
c("yes")
- label_have_dyspnoea_unknown
Label(s) for patient having unknown dyspnoea symptoms. Default:
c(NA, NaN)
- label_cpt_no_chest_pain
Label(s) for patient having no chest pain. Default:
c("no chest pain")
- label_cpt_nonanginal
Label(s) for patient having nonanginal or non-specific chest pain. Default:
c("nonanginal")
- label_cpt_atypical
Label(s) for patient having atypical chest pain. Default:
c("atypical")
- label_cpt_typical
Label(s) for patient having typical chest pain. Default:
c("typical")
- label_cpt_unknown
Label(s) for patient having unknown chest pain type symptoms. Default:
c(NA, NaN)
Value
An integer, percentage or category representing the patient's PTP for obstructive CAD
based on the ESC 2019 guidelines.
See parameter option output
for more information.
Details
The predictive model used to create the guidelines are based on patients from European countries with low cardiovascular disease (CVD) risk.
If the patient has both dyspnoea and a particular chest pain type (typical, atypical, nonanginal), The chest pain type will take precedence over dyspnoea.
Examples
# 35 year old female with typical chest pain
calculate_esc_2019_ptp(
age = 35,
sex = "female",
have_dyspnoea = "no",
chest_pain_type = "typical",
output = "percentage"
)
#> [1] "5%"
# 75 year old male with only dyspnoea
calculate_esc_2019_ptp(
age = 75,
sex = "male",
have_dyspnoea = "yes",
chest_pain_type = "no chest pain",
output = "percentage"
)
#> [1] "32%"